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ABSTRACT

Statistical shape models have been widely used in biomedi-

cal image analysis, e.g. segmentation, registration, and shape

classification. The traditional statistical shape models forced

all shape parameters of each shape into one vector and put

all vectors together to generate the point distribution model

(PDM). The standard principal component analysis (PCA)

was employed to project all shapes onto subspaces for dimen-

sionality reduction. Since the shape vectors have a large di-

mension, the previous methods is computational expensive.

In this paper, we propose a novel statistical shape models us-

ing natural PDM representations by multiple matrices and two

dimensional PCA (2DPCA) is used to reduce the dimension-

ality of shape parameters. Because 2DPCA considers the cor-

relations of row by row and column by column, our technique

can fast extract the principle shape parameters. Combining

with spherical harmonics shape representation, we create a

framework for biomedical anatomic structures’ shape anal-

ysis and classification. The experimental results using real

cardiac left ventricle shapes have demonstrated our method

outperforms the previous statistical shape modeling.

Index Terms— Statistical Shape Modeling, Shape Clas-

sification, PCA, 2DPCA, Cardiac Shape Classification

1. INTRODUCTION

Statistical shape models have proven to be useful tools to

study variation in anatomical shapes. A popular method cap-

tures shape by a sampled 3D point distribution model (PDM)

[1, 2]. The basic idea is to establish, from a training set,

the pattern of legal variation in the shapes and spatial rela-

tionships of structures in a given class of images. Statistical

analysis is used to give an efficient parameterization of this

variability, providing a compact representation of shape. Sta-

tistical shape models consist of two major steps: (1) shape

representation for extracting shape parameters; and (2) sta-

tistical analysis or pattern classification (learning a classifier)

based on those parameters. In the previous statistical shape

models methods, the standard principal component analysis

(PCA) or related approaches [1, 2, 3] are used to reduce the

dimensionality of shape parameters, because we usually have

much larger number of shape parameters (thousands) than the

number of samples (hundreds or less). Since the PCA only

can be performed onto vectors, the previous methods put all

shape parameters of each shape into one vector and generate

a matrix using N sample shapes. This is not a natural pre-

sentation for shape parameters. Recently, Yang et al. [4] pro-

posed a two dimensional PCA (2DPCA) in which image co-

variance matrices are constructed directly using original im-

age matrices and one-side low-rank approximation is applied.

Based on 2DPCA, we propose a novel statistical shape mod-

els method without treating shape parameters of every shape

as one vector (using one matrix to represent them). Com-

pared to previous method, the new approach captures corre-

lations between points by matrices based representations that

reduce much more computational time. As the result, the per-

formance of statistical shape models is also improved if we

use the same storage and memory size.

Numerous 3D shape representation techniques have been

proposed in the areas of medical image analysis, such as,

landmark-based descriptors, deformation fields generated by

mapping a segmented template image to individuals, distance

transforms, medial axes, and parametric surfaces. This pa-

per focuses on parametric surfaces using spherical harmonics.

The use of surface harmonics for rigid and nonrigid shape de-

scription is well known. In previous work, Chen et al. pre-

sented motion and shape modeling primitives for the left ven-

tricle [7]. Matheny and Goldgof [6] used 3D and 4D surface

harmonics to reconstruct rigid and nonrigid shapes. Because

they used the radial surface function (r(θ, φ)) in all models,

their methods are limited to represent only star-shape or con-

vex objects without holes. However, this assumption is not

true for many anatomic structures. E.g. the heart and its

chambers are not actually star-shaped, especially as there are

papillary muscles on the LV. Brechbühler et al. [8] presented

an extended spherical harmonic (SPHARM) method to model

any simply connected 3D object. A closed input object sur-

face is assumed to be defined by a square surface parameter

mesh converted from an isotropic voxel representation. The

key component of this method is the mapping of surfaces of

volumetric objects to parameterized surfaces prior to expan-

sion into harmonics. SPHARM method have been applied in
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many medical imaging applications, e.g., shape analysis of

brain structures [9, 5], cardiac functional measurement and

analysis [11].

We propose a new framework of combining this repre-

sentation with 2DPCA based statistical shape models tech-

nique for statistically analyzing or classifying 3D anatomic

structures. Our 2DPCA based statistical shape model tech-

nique is a general method and designed for any shape repre-

sentations, e.g. landmark-based descriptors, medial axes, etc.

We demonstrate our techniques using real heart data sets ex-

tracted from magnetic resonance (MR) images.

2. METHODS

Our statistical shape analysis method can be applied into any

shape representation approaches (e.g. image-based, voxel-

based, and surface-based). We are more interested in surface-

based approaches which can be applied in more general situa-

tions where a surface is not embedded in an image but defined

in another way such as segmented boundaries or triangula-

tions. For a 3D volumetric object, its boundary or surface ac-

tually defines the shape, and so surface-based representation

may be more appropriate for shape study unless the appear-

ance or tissue inside the object is also the focus of interest.

A 3D binary image is reconstructed from each set of

2D segmentation images (e.g. MRI, CT, etc.), with isotropic

voxel values corresponding to whether each voxel is excluded

or included. The surface of this 3D binary image is composed

of a mesh of square faces. The rest of this section is to

introduce the surface description approach using SPHARM

expansion, feature reduction method (2DPCA), and point

distribution model

2.1. SPHARM Shape Description

The SPHARM technique [8] can be used to model arbitrar-

ily shaped, simply connected 3D objects. An input object

surface is assumed to be defined by a square surface param-

eter mesh converted from an isotropic voxel representation.

Two steps are involved in converting the object surface to

its SPHARM shape description: (1) surface parameterization,

and (2) SPHARM expansion.

Surface parameterization aims to create a continuous

and uniform mapping from the object surface to the surface

of a unit sphere. The parameterization is formulated as a con-

strained optimization problem with the goals of preserving

area and topology while minimizing distortions; see [8] for

details. The result is a mapping of two spherical coordinates

θ and φ to each point v(θ, φ) on a surface:

v(θ, φ) =

⎛
⎝

x(θ, φ)
y(θ, φ)
z(θ, φ)

⎞
⎠ . (1)

When the free variables θ and φ range over the whole

sphere, v(θ, φ) ranges over the whole object surface. SPHARM
expansion is then used to expand the object surface into a

complete set of SPHARM basis functions Y m
l , where Y m

l

denotes the spherical harmonic of degree l and order m (see

[8] for details). The spherical harmonic basis functions are

defined as:

Y m
l (θ, φ) ≡

√
2l + 1

4π

(l − m)!
(l + m)!

Pm
l (cosθ)eimφ,

where Pm
l (cosθ) are associated Legendre polynomials (with

argument cosθ) that is defined by the differential equation

Pm
l (x) =

(−1)m

2ll!
(1 − x2)m/2 dm+l

dxm+l
(x2 − 1)l,

where l and m are integers with −l ≤ m ≤ l.
The expansion takes the following form:

v(θ, φ) =
∞∑

l=0

l∑
m=−l

cm
l Y m

l (θ, φ), (2)

where

cm
l =

⎛
⎝

cm
xl

cm
yl

cm
zl

⎞
⎠ . (3)

The coefficients cm
l are 3D vectors. Their components, cm

xl,

cm
yl , and cm

zl are usually complex numbers. The coefficients up

to a user-desired degree can be estimated by solving a set of

linear equations in a least square fashion. The object surface

can be reconstructed using these coefficients, and using more

coefficients leads to a more detailed reconstruction. Thus, a

set of coefficients actually form an object surface description.

It is not easy to intuitively understand a SPHARM coef-

ficient, since the coefficient is usually a complex number and

provides a measure of the spatial frequency constituents that

compose the object. However, the points of the sampled sur-

face (called landmarks) can be considered as a dual represen-

tation of the same object. This is a more intuitive descriptor,

and so we choose to use this representation in our study.

Using a nearly uniform icosahedron subdivision of spher-

ical surfaces, we obtain a dual landmark representation from

the coefficients via the linear mapping described in Eq. (2).

Thus, each shape is represented by a set of n landmarks (i.e.,
sampling points), which are consistent from one shape to the

next.

In all previous statistical shape analysis methods, the

shape descriptor becomes a 3n element vector:

x = (x1, · · · , xn, y1, · · · , yn, z1, · · · , zn)T . (4)

Clearly, we have many more dimensions than training objects.

PCA was applied to reduce dimensionality to make classifica-

tion feasible. The previous use Eq. (4) to put all coordinates
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into one vector, because the standard PCA only can be per-

formed on a set of vectors. This way really wastes the cor-

relations within all data points and their spatial information.

Given a group of N shapes, the mean shape x̄ can be calcu-

lated using

x̄ =
1
N

N∑
i=1

xi,

where xi is the landmark shape descriptor of the i-th shape.

The covariance matrix C of the data as follows:

C =
1

N − 1

N∑
i=1

(xi − x̄)(xi − x̄)T , (5)

CU = ΛU (6)

where the columns of U hold eigenvectors, and the diag-

onal matrix Λ holds eigenvalues of C. The eigenvectors in U
can be ordered according to respective eigenvalues, which are

proportional to the variance explained by each eigenvector.

The first few eigenvectors (with greatest eigenvalues) often

explain most of variance in the data. Now any shape x in the

data can be expressed using

x − x̄ = UV

where V is a vector containing the components of x in prin-

ciple components U.

Given a dataset of m objects, the first m − 1 principal

components are enough to capture all the data variance. Thus,

V becomes an m − 1 element vector, which can be thought

of as a new and more compact representation of the shape x
in the new basis of the deformation modes (i.e., x − x̄ is the

deformation between an individual shape x and the mean x̄).

This model is the point distribution model. As we discussed,

the dimension of those element vectors are huge and PCA

calculation is computational expensive. In order to improve

the statistical shape analysis model, we use 2DPCA to reduce

features without putting all coordinates of every point into one

single vector.

2.2. Point Distribution Model using 2DPCA

In 2D approach [4], the coordinates of points do not need to

be previously transformed into a vector and are keeping using

the natural matrix way, thus a set of N shapes is represented

as {X1, X2, · · · , XN}:

Xi =

⎡
⎣

xi1 xi2 · · · xin

yi1 yi2 · · · yin

zi1 zi2 · · · zin

⎤
⎦ .

2DPCA uses all shapes to construct the shape covariance

matrix G as:

G =
N∑

i=1

(Xi − X̄)T (Xi − X̄), (7)

(a) (b)

Fig. 1. (a) shows an example of left ventricle; (b) shows the

parameterized surface for point distribution model generation.

where Xi is the i-th shape with size of 3 × n, X̄ is the mean

shape of all sample shapes. From Eq. (7), it is obvious to see

that G is an n × n non-negative definite matrix. Then, the

projection axes of 2DPCA, u1, · · · ,uk can be obtained by

maximizing the matrix scatter criterion:

J(u) = Tr(uT Gu),

where u is a unitary column vector, uT u = 1.

The solution of u1, · · · ,uk can be obtained by directly

solving the algebraic eigenvalue problem Gui = λiui, where

ui is the eigenvector corresponding to the i-th largest eigen-

value of G. The 2DPCA solution can be written as:

X = Y WT , W = [u1, · · · ,uk],

where Y is the feature matrix of every shape matrix X and its

size is 3×k. The original shape matrices {X1, X2, · · · , XN}
are projected on to subspace U and the results are {Y1, Y2, · · · , YN}.

They are the new point distribution model of the N shapes.

The covariance matrix G of 2DPCA keep the column by col-

umn correlations of original matrix which are the exact spatial

correlations between different points. The new method can

reduce the dimensionality of PDM in a faster way compared

to the old PCA based method.

3. EXPERIMENTAL RESULTS

In our study, we demonstrate our novel method using the left

ventricle shapes. Shape classification results are compared

to the old method using standard PCA. The cardiac MRI is

used to capture 3D images of a heart during its normal oper-

ation in the short-axis or long-axis orientation. With acquisi-

tion timed according to heartbeat frequency, a fixed number

of images can be acquired during each heartbeat. In this work

imaging was performed on a 1.5 Tesla scanner (GE Medical

systems) with flip angle 20◦ and slice thickness of 5 mm. The

heart orientation was operator-determined from four-chamber

scout views, optimizing for perpendicularity to the cardiac

wall. The sequences of heart images were produced in the

DICOM format with 256 × 256 pixels size.

1543



0 1 2 3 4 5 6 7
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

The number of principle components

C
la

ss
ifi

ca
tio

n 
A

cc
ur

ac
y

PCA Base Statistical Shape Modeling
2DPCA based Statistical Shape Modeling

Fig. 2. The shape classification comparison between PCA

based statistical shape models and our new approach.

All images of diastolic stages are segmented for 3D shape

reconstruction. When we perform SPHARM for shape recon-

struction, the top part of shapes are cut down through fixing

the specific angles (θ, φ). The results are shown in Fig. 1.

Two groups data are use: normal group includes 35 subjects

and abnormal (with ischemia disease) group includes 28 sub-

jects. All shapes of diastolic hearts are reconstructed using

SPHARM method and the PDMs are generated using the old

method and our approach. To evaluate the performance, K-

NN classifiers with K=1 are employed to both PDMs. In our

method, the distance between two PDMs (A = (aij)3×k and

B = (bij)3×k) are defined as follows:

dF (A,B) = ||A − B||F =

⎛
⎝

3∑
i=1

k∑
j=1

(aij − bij)2

⎞
⎠

1/2

.

Fig. 2 plots the shape classification results of both the tra-

ditional statistical shape models and our approach. The val-

ues on x-axis are the number of principle components used

in shape classification and the values on y-axis are the clas-

sification accuracy. Our method always has a better perfor-

mance than the previous one, because more spatial relations

between points are considered when the program selects the

principle components (we select more meaningful principle

components).

4. CONCLUSION

In this paper, we propose a novel statistical shape models

method with naturally representing the shape parameters into

matrix, not forcing them into a vector as previous approaches.

Using such matrices, the new statistical shape models obtain

the spatial correlations between points faster than the previous

PCA based method. 2DPCA are used to map PDMs onto sub-

spaces with lower dimensionality. Our method selects more

meaningful principle components compared to others. The

experimental results of shape classification using real cardiac

left ventricle shapes validate our novel method outperforms

the previous PCA based statistical shape models.
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